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Two problems involving the unsteady motion of two-dimensional vortex sheets are 
considered. The first is the roll-up of an initially plane semi-infinite vortex sheet 
while the second is the power-law starting flow past an infinite wedge with separation 
at  the wedge apex modelled by a growing vortex sheet. In  both cases well-known 
similarity solutions are used to transform the time-dependent problem for the sheet 
motion into an integro-differential equation. Finite-difference numerical solutions to 
these equations are obtained which give details of the large-scale structure of the 
rolled-up portion of the sheet. For the semi-infinite sheet good agreement with Kaden’s 
asymptotic spiral solution is obtained. However, for the starting-flow problem 
distortions in the sheet shape and strength not predicted by the leading-order asymp- 
totic solutions were found to be significant. 

1. Introduction 
The mechanics of unsteady two-dimensional vortex sheets are of fundamental 

importance in obtaining an understanding of the large-scale behaviour of two- 
dimensional and quasi-three-dimensional thin shear layers in a variety of fluid- 
mechanical applications. Examples are the much studied case of the roll-up of the 
approximately two-dimensional shear layer shed by a high aspect ratio wing, the 
unsteady separated flow past a sharp-edged body, and the nonlinear Kelvin-Helm- 
holtz instability. In  these and other examples, the vortex sheet is usually regarded 
as the infinite Reynolds number limit in which the thin shear layer is contracted into 
a two-dimensional line distribution of circulation, all points of which convect with the 
local flow velocity in an otherwise irrotational fluid. The problem is then to solve the 
initial-value problem describing the vortex-sheet motion and, since the governing 
equation is nonlinear [see (211, this task must usually be performed numerically. 

Over the past few decades a large number of attempts have been made (see Fink 
& Soh (1 974) for a comprehensive review) to model the vortex-sheet motion by that 
of a finite number of point vortices whose initial strengths and positions represent a 
discretized model of the distributed sheet circulation. Although partly successful, 
these calculations usually resulted in unphysical chaotic motion of the vortices after 
some initial period of more or less coherent motion. After a careful analysis, Fink & 
Soh (1 974) concluded that a point-vortex representation implicitly involves the 
neglect of logarithmic terms which represent the local contribution in the Cauchy 
principal-value integrals for the self-induced velocity field of a vortex sheet proper. 
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They argue that the logarithmic terms, although initially vanishingly small, amplify 
through small sheet distortions, leading eventually to the chaotic motion observed by 
most authors. The remedy proposed is to rediscretize the sheet at every time step by 
replacing the current vortex set with another equidistantly spaced set of the same 
total circulation. This appears to check the growth of the logarithmic error, hence 
inhibiting the onset of chaotic motion. I n  several applications, including the problem 
of the finite vortex sheet, Fink & Soh (1974, 1978) obtained smooth vortex-sheet 
behaviour which included coherent spiral roll-up over longer periods than had 
previously been reported. 

There are several interesting cases, however, for which, through the absence of 
appropriate length and circulation scales, the vortex-sheet motion admits similarity 
solutions. It is then possible to formulate the problem as an integro-differential 
equation which does not contain time explicitly, and thereby avoid difficulties directly 
associated with unsteadiness. Apart from their intrinsic interest, the similarity flows 
may then serve as useful basic solutions for the time-dependent calculation methods 
and at the same time provide starting conditions a t  small times for particular appli- 
cations of these methods. 

In  the present paper we address two such problems. The first is the roll-up of a 
semi-infinite vortex sheet with an initially parabolic circulation distribution. The 
second is the problem of power-law starting flow past a semi-infinite wedge with vortex 
separation a t  the wedge apex. The latter case may be regarded as the unsteady 
analogue of a class of slender-body flows with leading-edge separation treated by 
Smith (1968, 1971, 1972). Kaden (1931) first proposed the (time)% law for the roll-up 
of a semi-infinite vortex sheet and obtained an asymptotic solution for the shape 
of the inner spiral portion. This work was extended by Moore (1975) and by Guiraud 
& Zeytounian (1977), who obtained higher-order elliptical corrections to Kaden’s 
nearly circular spiral. The effect of viscosity in diffusing the vorticity on the sheet to 
form a rotational but essentially inviscid core and a viscous subcore has been analysed 
by Moore & Saffman (1973). There seems to  have been no attempt to determine the 
detailed sheet shape numerically although Moore (1975) suggested a scheme for doing 
so. The appropriate similarity law for the wedge starting flow appears to have been 
originally discovered by Prandtl (see Smith 1966), while attempts a t  a, solution for the 
flat-plate case (zero wedge angle) have been made by Anton (1939) and Wedemeyer 
(1961). A discrete-vortex solution for non-zero wedge angles was obtained by Rott 
(1956), who also derived the asymptotic form for the rolled-up spiral. The most com- 
plete numerical treatment of the problem is that due to Blendermann (1969)) who 
obtained a family of solutions consisting for the most part of a single outer turn of the 
sheet from the apex and an isolated vortex representing the inner rolled-up part. 
Only for the case of impulsively started flow about a flat plate is enough of the sheet 
included to probe the asymptotic rolled-up region and the indication is of a nearly 
circular spiral. Finally, Fink & Soh (1974) have applied their vortex rediscretization 
method to  the impulsive flat-plate flow and obtained good results. 

I n  the following we apply the model consisting of a vortex sheet, a cut and an 
isolated vortex developed by Smith (1968) to the roll-up of a semi-infinite vortex 
sheet and also to the wedge starting flow. For both problems about four turns of the 
rolled-up sheet are included in the calculations, which takes the solutions well into 
the spiral region where the sheet spacing is small compared with the local radius of 
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curvature. Details of the numerical solutions are presented, including the self-similar 
vortex-sheet shapes and, for some cases, the self-similar flow st,reamline patterns. 
Comparison of some aspects of the solutions with the leading-order asymptotic 
solutions of Kaden (1931) and Rott (1956) are also presented and their significance is 
discussed. 

2. The roll-up of a semi-infinite vortex sheet 
2.1. Formulation 

The roll-up of an initially plane semi-infinite vortex sheet has become known as 
'Kaden's problem' (after Kaden 1931) and may be formulated as follows (see Moore 
1975). An initial flow for t < 0 is defined as steady attached potential flow around a 
semi-infinite flat plate x = z + Oi, x 6 0, with complex velocity potential 

W = @ + iY = - iaza, (1) 

where z = x + iy  is the complex-plane variable and a is a real positive constant. At 
t = 0 the rigid flat plate is removed or dissolved, leaving a semi-infinite vortex sheet 
with circulation I' = 2aIxlt in (2, 0) and local sheet strength y = Idr/dxl = alxl-4. The 
self-induced velocity field of the sheet is infinite as x --f 0 and this singularity is resolved 
through an unsteady spiral-like roll-up of the sheet for t > 0, beginning at  the sheet 
tip and subsequently entraining the whole sheet. This problem approximates the 
initial period of roll-up near the ends of a finite sheet with an initially elliptic circu- 
lation distribution, of the kind shed by a rectangular aerofoil moving with uniform 
velocity. 

Adopting the formulation of Moore (1975), we describe the position of the sheet by 
the complex function zo(r,t), where a particuIar value of I? denotes a particular 
constituent fluid particle (a vortex line) of the sheet. The (general) equation of motion 
of the two-dimensional sheet is 

aZo(I', t)/at = d W/dz  (2) 

(the bar denotes the complex conjugate), where the left side is the Lagrangian velocity 
of a sheet fluid particle and the right side is the Eulerian complex velocity field. 
Equation (2) simply says that the fluid particles comprising the sheet convect with the 
local fluid velocity. It automatically satisfies the conditions of continuous normal 
velocity and pressure across the sheet. For a semi-infinite sheet we have, for a, general 
point in the z plane, 

(3) 
dW -=-I 1 dl?' 
d z  27ri z -zZg( l? ' , t ) '  

It is well known that the right-hand side of (3) is discontinuous across the sheet, 
taking different values according to the Plemelj formula 

as a point zo(l?, t )  on the sheet is approached from the 2 side. The integral in (4) is 
the Cauchy principal value integral (see Muskelishvili 1946, p. 26) and is equal to 
the mean of the limiting complex velocities on the f sides of z0( l?, t ) .  Since this integral 
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may be shown to be equal to the local self-inductive velocity of the vortex sheet, 
substitution into (2) leads to an initial-value problem for xo(r, t )  given by 

az, i dr” 
at 2ni 20 - Z O ( F ‘ ,  t )  

zo(r, 0) = - p / a 2 .  

with initial condition 

A dimensional analysis of the above problem suggests the existence of a similarity 
solution of the form 

Z o ( r .  t )  = (at)%w(h), (7) 

where w ( h )  = <(A)  + iq(h) is the non-dimensional self-similar shape function for the 
sheet, a function of the non-dimensional circulation parameter 

h = r/(&f). ( 8 )  

9(2G-hddZj/dh) = dCl/dw, (9a) 

Substitution of ( 7 )  and (8) into (5) leads to an integro-differential equation for o(h): 

where the non-dimensional complex velocity is 

dCl 1 dh’ - = -PJo 
d o  2ni o(h)  - w(h’) * 

Equations (6)-(8) show that w ( h )  must satisfy 

w ( h )  N -ah2 as h-tm. (10) 

W(2,  t )  = a 4 t m [ z / ( a t ) q .  (11)  

Equations (7) and (8) show that W is related to the non-dimensional complex velocity 
potential Cl = @ +i$ by 

2.2. Numerical solution of the integro-differential equation 

An approximate numerical solution to (9) is to be obtained by applying the model 
consisting of a vortex sheet, a cut and an isolated vortex developed by Smith (1968) 
for the treatment of leading-edge separation from a slender delta wing. The adapta- 
tion of the model to the present problem is as follows. The vortex sheet in the o plane 
is divided into three sections. 

(i) A section described by (10) and defined by co > h >, A, > 0, thus extending from 
w = - co + O i  to w, = - ah: + O i .  This section is to be regarded as an undisturbed 
straight portion of the sheet remote from the spiral predicted by asymptotic solutions. 

(ii) An intermediate section defined by A, > h >, A, > 0 divided into N straight 
subsections >, h > A, with end points wk--l and wk (k = 1, .. ., N ) .  The value of A, 
chosen must be sufficiently large that the solution obtained approximates (10) for 
small values of k = 1 , 2 ,  . . . , and this can be verified only a posteriori. The value of h , 
will be such that a substantial portion of the rolled-up sheet is included in this section. 

(iii) An inner part A,,, > h > 0 over which we may regard the sheet as approximated 
by the tightly wound asymptotic spiral. For a point on the sheet h > A,, the con- 
tribution to the complex velocity due to this part may be approximated by that due 
to an isolated vortex of strength h , placed at  the ‘centre of circulation’ in (0, h ,), 
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which we denote by v, = w N+l (for a justification see Smith 1966). To define Cl uniquely 
in this region, wN+l is joined to w N  by a cut of arbitrary shape in the w plane which, 
together with the vortex sheet, defines an entire cut for a single-valued Q. Note that 
the cut ( w N ,  itself plays no part in the actual calculation since d R / d o  is single 
valued in this region and R itself is not required. 

With the above representation of the sheet, for a point on the sheet h > A N ,  ( 9 b )  
may be approximated as 

+ dR dh‘ - = F(w)+- 
dw 

where 
[in-log( w4 - Sih, )] 

F ( w )  = -- 
2 n d  0 8  + Qih, 

and where the three terms in (1 2 a )  correspond respectively to the contributions from 
the three parts of the sheet. 

We satisfy a finite-difference form of (9) at  the midpoints 

Wk-1,k = Q ( w k - 1 + w k ) ?  hk-1,k = & ( h k - l + h k )  ( k  = a . * , N )  (13) 

of each of the N straight elements forming section (ii) of the sheet. The dG/dh on the 
left-hand side of (9a)  is replaced by a two-point differentiation rule while (9b) is 
approximated by (12) with each of the N integrals evaluated using the trapezoidal 
rule, ignoring the Cauchy principal value singularity for j = k .  For the contribution 
of the kth element a t  w ~ - ~ , ~ ,  this may be shown to give the same result, namely zero, 
as an evaluation in which a linear variation of w with h is assumed in (Ak, hk-l) with 
proper treatment of the Cauchy principal value. Note, however, that use of the 
trapezoidal rule for the velocity induced by a sheet element at  points on or off the 
element which are near but not at  the midpoint can lead to serious inaccuracies owing 
to the neglect of logarithmic terms which vanish at  the midpoint (see Fink & Soh 
1974; appendix B herein). The finite-difference form of (9) then becomes 

where 
ck-l ,  k = &(hk-l  + A k ) / ( h k - l  - Ak)? 

A, = &Al, Aj  = i(hj-l-hj+l) ( j  = 1, ..., N -  l ) ,  

A N  = Q ( A L V - - 1 - h N ) j  A N + 1  = 

and where (14) represent 2N real equations. 

(9a) over (0, A,) to obtain 
Since there is no hope of satisfying (9) element by element for h < A,”, we integrate 

By making the approximations 
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substituting into (15) and using (12), we obtain the following averaged form of (9) 
(0, AN): 

Equation (17) is equivalent to the so-called 'zero-force' condition used by Smith 
(1968) over the inner part of the sheet for the slender-body leading-edge separation 
problem. 

For fixed Aj (j  = 1, ..., N ) ,  (14) and (17) may be regarded as 2(N+ 1) nonlinear 
equations for the 2(N + 1) unknowns f j  and qj  ( j  = 1, ..., N + 1). Instead of this 
scheme, however, we adopt a more convenient one through the transformation 

A j  ' PjhN (j = 1, * . . , N - l ) ,  (18a) 

w j  = ~ N + l - p j e x p [ i ( ~ j + ~ ~ ) ]  (j = 1, ..., N ) ,  (18b) 

(18c) wN+l = w~ -k Pv exp ( ixv) ,  

where pi = loj - w N f l /  and the x j  are the anticlockwise polar angles about o ~ + ~  of the 
oj, measured from the datum line ( w ~ , w ~ + ~ ) .  Substituting (18) into (14) and (17) 
and regarding the xi as constants, i.e. assuming a fixed angular separation between the 
w j ,  we obtain a set of 2N + 2 equations which we write as 

fJX) = O (q = 1, ..., 2 N + 2 )  

for t8he 2N + 2 unknown components of the (2N + 2)-fold 

= (Pv,Pl,PZ, .*.,PN,h,PZ, ***,PN-I,AN,Xv). (20) 

For the present problem and for the starting-flow problem a solution to (19) was 
obtained using a Newton-Raphson scheme employed by the author (see Pullin 1975) 
for the treatment of the leading-edge separation problem. All solutions, say X*, 
reported here satisfied the condition 

q= 1 

which is regarded as giving a sufficiently accurate solution of the algebraic equations 
if not the corresponding integro-differential equation. 

2.3.  Numerical results 

The solution to Kaden's problem presented here was obtained with N = 97, this value 
being the largest that could be adopted within the limits of computer storage. The 
angular separation xi - xj-l of points on the sheet was chosen as about 20°, i.e. about 
18 points per turn of the sheet. Since the solution method is iterative, an initial 
approximation was required. This was obtained in the first instance for N = 40 by 
guessing a value of wNfl and patching a sheet shape given by Kaden's (1931) asymp- 
totic solution [see (21)] onto a length of straight undisturbed sheet given by (10). 
The solution for N = 97 was then obtained by extending the N = 40 solution by again 
using the asymptotic solution but with improved values of the arbitrary constants. 

The solution points representing the self-similar sheet shape shown in figure 1 
correspond to A, = 3.6 and w, = - 3-24 + Oi. That the numerical solution indeed 
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FIUURE 2. Numerical and large h asymptotic solution. -, asymptotic; 
..... , numerical, N = 97; __ , isolated vortex position. 

asymptotes to the large-A solution is clearly demonstrated in figure 2, where the first 
seven or eight calculated points are indistinguishable from the curve representing 
(10). At the other end of the sheet, if, following Moore (1974), the roll-up process is 
reckoned to begin where the sheet is first vertical (j  = 29), then about four turns of the 
spiral are included in the solution. Here the value of h is A,, = 1.342 compared with 
A9, = 0.7123. Thus at  any instant in the unsteady roll-up process, the amount of 
circulation contained in the spiral region is rap 2: 1.34a%, and about 50% of this 
circulation resides on the outer four spiral turns. 
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FIUUFCE 3. Inner part of sheet in the o = E + iv plane, showing effect of step size. 0, type A 
solution, N = 97; 0, type B solution, M = 110, N = 94; x , type B solution, M = 142, N = 94. 

Owing to the complexity of (9), an analysis of errors incurred in the calculations is 
rather difficult. The most likely source, however, is the use of the trapezoidal rule for 
the velocity-inducing effect of the segmented part of the sheet. For a particular seg- 
ment the major part of this error will come from the immediately adjacent sheet 
segments. For the overall solution, the cumulative error will depend on the relative 
magnitude of local and far-field contributions to the local velocity, and may be expected 
to depend on the ratio GslSp of arc-length step size along the sheet to sheet spacing, 
particularly in the spiral region, where the N = 97 solution indicates a tightly wound 
sheet with a ratio of sheet spacing to radius Splp < 1. In addition to this solution, 
referred to as ‘type A’ in figure 3, two additional, ‘type B’ solutions were obtained to 
estimate the effects of step size. These differ from the type A solutions in the following 
sense. For the type A solution, the solution in co > A > A, is assumed to be given 
[by (lo)] and that in A,, > h > 0 is obtained as described in $2.2. For the type B 
solution, the solution in co > h 2 AJf-N is assumed to be given by (10) in 03 > h > A, 
and by M -  N points wj ( j  = 1, .. ., M -  N ,  with M > N )  in A, > h > obtained 
from the known type A solution. The solution in hAI-N > A > 0 is then obtained 
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FIGURE 4. Instantaneous streamlines in the w plane for Kaden's 
problem. -, Streamlines; -- -, vortex sheet. 

exactly as for the type A solution but now with 2 ( N +  1 )  unknowns given by 
wj ( j  = M -21' + 1, M + 1 ). This technique allowed approximate halving of the step 
size over tightly wound portions of the sheet which were felt to be probably most 
sensitive to step size, while still handling a manageable number of unknowns. Figure 
3 indicates that the effect of step size, as so tested, on the sheet shape is small com- 
pared with Sp. This is not entirely conclusive however, since the far-field errors due 
to the trapezoidal rule for a single segment are of order (6s/R)2, where R is the distance 
to the segment's midpoint and, even for the M = 142, N = 94 solution, we still have 
6s/Sp = O(1). Further discussion of this question is given in appendix B, where it is 
argued that, owing to error cancellation, errors remain small even for Ss/6p = O(1). 

Since the position wg8 = - 0.308 + 0.489i of the isolated vortex is the present estimate 
of the spiral sheet's centre, it follows from ( 7 )  that the trajectory of this point is 
z(0, t )  = (at)$ ( - 0.308 + 0.489i). In  terms of the critical points of the velocity field (see 
Perry & Fairlie 1974), z(0,  t )  will appear as a moving centre as indicated in figure 4, 
where instantaneous or self-similar streamlines @ = I m  f2 are shown. From (1  1) it 
follows that the actual streamlines expand with the vortex sheet in a wavelike fashion. 
The other major feature of the flow field is a moving saddle point w = - 0.615 + 0.190i 
for which @ = - 0.084. For a symmetrical vortex sheet with an elliptical circulation 
distribution, the singular points on each half of the z plane would consist of a centre 
and a saddle point corresponding to those for the semi-infinite sheet together with 
another centre lying on the vortex sheet. 
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FIGURE 5. Comparison of numerical and aaymptotic solution to Kaden’s 
problem. . * - .  -, present numerical; -, aaymptotic (Kaden 1931). 

2.4. Comparison with asymptotic solution 

Kaden’s (1931) original asymptotic solution may be written as 

w - w, = a7-8 exp [i(7/27ra2 + €11, (21) 

where r = k3 and a and E are arbitrary constants. This solution represents a tightly 
wound spiral with nearly circular turns, and may be shown to be dominated by 
circulation on the sheet between a point o ( h )  and the spiral centre. Moore (1975) 
obtains a large-7 asymptotic solution of (9) as a second-order term in a series for which 
(21) represents the leading term while Guiraud & Zeytounian (1977) obtain further 
terms using a rather different approach. These higher-order terms represent ellipticity 
in the sheet shape, which Moore (1 975) interprets as the straining effect on the rolled-up 
spiral of the remote, unrolled portions of the sheet. Consequently, if one takes an 
asymptotic solution of any desired order larger than the first, then the various constants 
appearing, including a and E ,  can be determined only from the flow field as a whole, 
i.e. from the complete solution for w(h).  The labour involved in determining the 
constants to second order from Moore’s (1975) solution is considerable however, and 
since figure 3 indicates that the effects of ellipticity are not large (i.e. the turns appear 
to be approximately circular with monotonically decreasing radius) we shall restrict 
ourselves to comparison with the first-order solution (21). In this case an approxi- 
mation to a and E may be obtained by patching the numerical and asymptotic solutions 
at  some point along the sheet. We arbitrarily choose j = 96 (avoiding the last point 
j = 97 because of possible end effects), which yields a = 0.124 and -7r < E < 7r, 
E = 2.69. Of course this procedure is reasonable only if the a and E thus obtained do 
not depend too strongly onj. If the solutions are patched forj  = 73, we obtain a = 0.1 25 
and E = 2.75, while for j = 50, a = 0.122 and E = 1.83. It is significant that these 
values of a differ appreciably from the value a = 8 obtained from an approximate 
argument due to Betz and reproduced by Moore & Saffman (1973; see also Moore 
1975). Figure 5 compares the numerical and asymptotic solutions for the real and 
imaginary parts of w(7)  with (21) for a = 0.124 and E = 2.69. The qualitative features 
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FIGURE 6. Vortex-sheet p, 8 relationship. . . . . a ,  prwunt numerical; 
---, asymptotic (Kaden 1931). 

of the solutions are quite similar for the whole range of 7 shown, the relationship 
between period and amplitude in ( 2 1 )  being approximately preserved in the present 
solution. 

The clearest indication of possible elIipticity in the sheet shape may be obtained 
from itsp, 8 relationship, where p and 8 are polar co-ordinates of a point on the sheet, 
with p = 0 at  the spiral centre. Putting 19 = 7 / 2 n a 2  + B in ( 2 1 )  and eliminating 7 yields 

p = (2n)-3a4/(8 - B)f, ( 2 2 )  

which is Kaden’s well-known result for the sheet shape. This may be compared with 
the numerical solution by choosing the origin of 8 such that 8, = r, /2na2 + B .  Figure 
6 shows good agreement, and clearly indicates that elliptical distortions in the sheet 
shape are small after the first few turns. 

Some insight into the sheet behaviour during roll-up may be obtained by following 
the motion, from t = 0, of a typical fluid particle on the sheet. Noting that a constant 
value r = Po marks a material fluid particle, Moore & Saffmann (1973)  showed 
from the first-order solution that a particle with initial position xo = - r;/4a2 will 
move, for large t ,  in a circular orbit (to first order) of radius r, = &;/a2 around the 
sheet centre with azimuthal velocity V, = ct2/(2naI”,). In addition they showed that 
the distance between successive sheet turns decreases as 6r 2: 4nr t / (3a t ) .  The sig- 
nificance of these results may be seen by considering the local sheet strength 

which is equal to the magnitude of the local tangential velocity discontinuity across 
the sheet. From (8 )  it follows that if a sheet particle has r = ro then y ( r o ,  0) = 2a2 / r , ,  
while from ( 6 )  and ( 7 )  we obtain 

(24 )  ~ ( 7 ) / 7 ( 7  = 0) = &$ld~/d7(-~, 
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FIGURE 7.  Variation of vortex-sheet strength with dimensionless time following 
a fluid particle. -, present calculation; ---, asymptotic (Kaden 1931). 

where 7 = a4t/I'; is the non-dimensionalized time as in (21). For large 7, (21) then gives 
to leading order 

The comparison of (25)  with the present numerical results in figure 7 shows excellent 
agreement. The decrease in y as y N rgt-1 corresponds to a local stretching of the sheet 
at a constant radius of curvature r,, as we follow the fluid particle, the result of which 
is the decrease in spacing of successive turns as t-1 indicated earlier. 

y ( ~ ) / y ( O )  = @a7-1. (25) 

3. Starting flow past an infinite wedge 
3.1. Formulation 

We now turn to the problem of inviscid starting flow past an infinite wedge. Consider 
two-dimensional flow, starting from rest at  t = 0, of an incompressible fluid past a 
stationary boundary with a corner of angle P ~ T  (1 > ,8 2 0). As the flow accelerates, the 
boundary layer which forms on the windward edge of the corner will be unable to 
negotiate the sharp apex and will separate, forming a free shear layer which rolls up 
into a coherent spiral-like structure illustrated in the well-known flow visualizations 
of Prandtl & Tietjens (see Batchelor 1970, figure 6.7.2). Near the salient edge, the 
boundary layer may be expected to grow as (vt)*,  where v is the kinematic viscosity, 
while, as will be seen, the minimum growth rate of the spatial scale of the separated 
structure as a whole is as 8, Hence after a small initial period St of slow viscous flow, 
it is reasonable to model the separated shear layer by a vortex sheet expanding from 
the salient edge into an otherwise irrotational flow. 

We therefore consider a potential flow, starting from rest, for which the overall 
complex potential for attached flow is of the form 

W(2, t )  = AtmF(2)) (26) 
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where z = x+iy  is the complex variable in the physical plane, m 2 0 is the time 
exponent, A is a constant and F(z )  satisfies the appropriate boundary conditions in the 
z plane. Near the salient edge, which we take as the origin in the z plane, the leading 
term in the expansion of W(z,  t )  for small z is of the form 

W = -iatmzn, (27) 

where n = 1/(2 -p), a is a real positive constant and where (27) represents attached 
flow past an infinite wedge of angle /37r positioned in the z plane as shown in figures 
9 (a)-(c). The singularity of the form P - 1  in the complex velocity for z 3 0 in (27) is 
removed by introduction of a vortex sheet representing the separated shear layer. 
We again use a Lagrangian description z0(F, t )  of the vortex sheet, where r is the 
discontinuity in CD = R ( W )  across the sheet at zo(r,t) or, equivalently, the total 
circulation lying on the sheet between zo and the rolled-up sheet tip. For t less than 
some interval At (estimates of both At and St can be readily obtained), the evolution 
of the sheet will be dominated by the attached flow (27), i.e. the sheet will initially 
see the wedge as infinite. By introducing the conformal mapping 

z* = z", (28) 

which maps the flow region n(1- +p) 2 argz 2 -n(l - $,8) into the right-hand half 
of the z* plane, the complex velocity at  a point in the z plane may be readily con- 
structed, and equation (2) for the motion of zo(F, t )  becomes 

where the integral term represents the contribution to the complex velocity at  zo( r, t )  
of the line distributions of circulation representing the vortex sheet and its image 
in the wedge. The total circulation shed from the edge a t  time t is I?,(t) and is determined 
by requiring that d W/dz  be finite as z + 0. Since the 22-1 factor on the right-hand side 
of (29) is singular as zo -+ 0, this requires that 

which is the well-known Kutta condition for the present problem. 
No natural length or velocity scale is provided by the boundary conditions on the 

attached flow given by (27). Dimensional analysis then suggests the existence of a 
similarity solution to (29) and (30), which we write as 

zo(r, t )  = Cal/(2-ntt(l+m)/(2-n)~(h).  (31) 

Here @ ( A )  = c(h) + ir(h) is the non-dimensional self-similar shape function for the 
sheet, a function of the dimensionless combination 

n 

of r and t ,  where J is a constant to be determined. The scaling constant 
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can be ext,racted from Rott's (1956) analytical discrete-vortex solution and is intro- 
duced so as to keep o(h) finite in the limits m-tco and possibly n-f 1. Note that the 
minimum value of 8 for the time exponent in (31) occurs for m = 0 and n = 4. The 
parameter h takes the value h = 0 a t  the wedge apex and the value h = 1 at the tip 
or centre of the rolled-up sheet. It then follows from (32) that r,(t) is given by 

(34) r,(q = ~n~2/(~-n)t2(i+m~(z--n)-i~. 

Equations (31), (32) and (34) are the similarity laws for the wedge problem discovered 
by Prandtl, Rott (1 956) and other workers. 

Substituting (31), (32) and (34) into (29) yields the following complex integro- 
differential equation for o = w(h) (0 < A < 1): 

(1-n) ( 3 5 4  

where 

with Q = 2 - (2 - n) / ( l  + m).  Substituting the same equations into (30) leads to a single 
real (by symmetry) constraint on w(h) and J which is sufficient to determine J :  

1 -&lo1 [@-"(A') + w P ( A ' ) ]  dh' = 0. 

From (31) and (32) it follows that W is of the form 

W(Z, t )  = Cn(32/(2- n) t2(l+m)/(2-n)-ln[Z/Cal/(2--n) t(l+m)/(z-n))], (37) 

where is the non-dimensional complex potential. The behaviour of the solution to 
(35) and (36) near the wedge apex (h- to)  is discussed briefly in appendix A while 
Rott's (1956) solution for the asymptotic spiral (A+ 1) is considered in 0 3.4. 

3.2. Numerical solution 

For intermediate h a numerical solution to (35) and (36) for w(h) and J was obtained 
by the method described in Sj 2.2. Here, however,we are dealing with finite rather than 
infinite vortex sheets. Hence for numerical purposes the sheet is divided into only 
two sections. 

(i) A segmented section h, 2 h > 0 divided into N straight subsections hk 2 h > hk-1 

with end points wk-1 and wk (k = 1, ..., N ) .  
(ii) An inner part 1 > A > A, for which the circulation J(l - A N )  is lumped into an 

isohted vortex at  w, joined to wN by a cut in the w plane. 
Since the finite-difference forms of (35) and of the integrated equation in ( A N ,  1 )  

(zero-force condition) are then essentially similar to (14) and (17), with added com- 
plications due to solid boundaries and an image vortex sheet, we do not give them 
here. Equation (36), for which the integrand has an integrable singularity at h = 0, 
is an extra condition for the present problem. For ,!I > 0,  the contribution to the 
integral in (36) from the first segment (0, A,) adjoining the wedge apex was evaluated 
using (54) (see appendix A) while, for ,!I = 0, (48) was used with K ,  and K2 expressed 
in terms of o1 and A,. Using transformations similar to (18) with w,, replaced by 
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Inner part of sheet for semi-infinite flat plate in the w = 7 + i[ plane, showing effect of step size, 
for /3 = 0, m = 0. 0, type A sclution, N = 75; 0, type B solution, M = 114, N = 75; x , type B 
solution, M = 140, N = 75. 
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FIQURES 9 (a, b) .  For legend see p. 418. 

wo = 0 -+ O i ,  we finally obtain a set of 2N + 3 nonlinear equations for the (2N + 3)-fold 

X = ( P ~ , P Z , P ~ ,  .. . , P N J P ~ ,  x v 9 ~ 1 9 ~ 2 ,  - . . , P N - - ~ ,  ~ N , J ) ,  (38) 

where pj = Iw, - wjl (j = 1,  . . ., N ) ,  w, = pvexp (ixJ and ,uj = hi/& (j = 1,  . . ., N - 1).  
These equations were solved for a range of time exponents and wedge angles using the 
Newton-Raphson scheme referred to in 0 2.2. 

3.3. Numerical results 

Solutions to the finite-difference equations were obtained with N = 75. The typical 
angular separation of points on the sheet was about 20"-25" except very near the 
apex, where the step size was gradually reduced to about 0.1" over the segment 
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FIGURES 9(c, d) .  For legend see p. 418. 

adjoining the wedge apex. The solutions discussed here were obtained for m = 0, 0.25, 
0.5, 1-0,2.0,5.0 and co and for values of p ranging from zero up to the maximum value 
for which solutions could be found. An initial approximation for m = 0 and p = 0 was 
obtained by using a combination of Rott's (1956) discrete-vortex solution [see (39)] 
and his asymptotic large h solution [see (40)l. Additional solutions were then obtained 
by varying p and m, using the last found solution as an initial approximation for the 
next pair (m, p). 

Although we should expect solutions to exhibit a sensitivity to step size similar 
to that found for Kaden's problem, this effect was nevertheless tested. The results 



418 D. I .  Pullin 

m=O 
A~=0.544 
J=2.440 r 

-0.4 -0.2 0 0.2 

5 

m= I 
AN =0-78? 
J= I .942 

m=m 
A N  =0.928 
J= 1.685 
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FIGURE 10. Self-similar vortex-sheet shapes in the w plane; m = 0, N = 75. 

are depicted in figures 8 (a) and (a) for m = 0 and /3 = 0. Again the effect of step size 
appears to be small compared with the sheet spacing, and for this reason, in the sheet 
shapes illustrated in figures 9 (a)-(e) we have drawn smooth curves through the cal- 
culated points. Note that the solutions for m = 00 have no physical meaning in terms 
of the similarity law but represent the limiting behaviour of solutions for m greater 
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FIGURE 11. Variation of isolated vortex angle with wedge angle. 
-,present; ---, Rott (1956). 

than about 10. For increasing m at constant p, figures 9(a)-(e) show that the sheet 
becomes more loosely wound about the spiral centre. Of the total circulation, the 
fraction AN lying on the 46 turns of the sheet represented in the calculations increases 
from about 55 yo to 97-98 yo as m -+ a. Increasing p at constant m appears to induce 
increasing ellipticity in the sheet shape, although for the larger wedge angles this effect 
can aIso be associated with increasing m. For all cases where ellipticity is evident, it  
is noticeable that the sheet turns do not appear to become more circular towards the 
inner part of the solutions. Following Moore's (1 975) interpretation of ellipticity for 
Kaden's problem and that of Smith (1968) for similar effects in the leading-edge 
separation problem, we might interpret this effect as the influence of the straining 
field produced by the attached flow and the bound circulation in the wedge on the 
inner parts of the spiral. 

For wedge angles above 120" it  was found to be increasingly difficult to obtain 
solutions for a, given value of m ,  presumably because the finite-difference equations 
become ill conditioned in the limit p-+ 1 (n -+ 1 ) .  The maximum wedge angles for which 
N = 75 solutions could be obtained for m = 0,  1 and co were 155", 120" and 120" 
respectively, which are similar to those for which Smith (1971) could obtain solutions 
for the related problem of leading-edge separation from a slender delta wing of 
rhombic cross-section. Form = 0, some solutions for N = 25 could be found for wedge 
angles greater than 155", one of which is shown in figure 10. Note in figures 9 ( e )  and 
10 the appearance of a point of inflexion in the sheet shape at  m = 0 for wedge angles 
greater than about 120". 
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In  the limit h,+O, the vortex sheet vanishes and the whole solution reduces to an 
isolated vortex joined to the wedge apex by a cut in the w plane. Rott’s (1956) analytical 
solution for this limit may be written as 

J = 277n*pt. (39c)  

These solutions are compared with the results of the present calculations in figures 
11-13. The discrepancies between the present values of J and those obtained by 
Blendermann (1969) form = 0 may be attributed to the fact that Blendermann appears 
to neglect a non-zero force on the cut in the complex plane joining w, to w N ,  so that his 
overall sheet-cubvortex system is not approximately force free (apart from dis- 
cretization errors) as in the present solutions. 

Figures 14 ( G )  and ( b )  show lines of constant @ = Im Cl obtained from the calculated 
solutions for m = 0, p = 0 and m = 0, @ = 0.5 respectively. The relationship of these 
curves to the actual streamlines is given by (37 ) ,  which shows that lines of constant 
Y = Im [ W(z,  t ) ]  expand with the vortex sheet like a wave through the fluid with 
increasing time. Topologically, the pattern for m = 0 and /3 = 0 consists of a moving 
centre a t  the spiral vortex centre and a moving half-saddle point where the streamline 
from the flat-plate edge reattaches to the plate surface. These two features also exist 
for the case m = 0, ,4 = 0.5 but in addition we have what should. be termed a de- 
generate saddle point at  the wedge apex. For both cases the closed streamline 1c. = 0 
(Y = 0) might be termed an ‘entrainment’ boundary, since all fluid engulfed within 
this moving curve will end up between the turns of the rolled-up sheet and eventually 
as part of a rotational core and a viscous subcore. The same may be said for @ = 0 in 
figure 4 for Kaden’s problem. It is interesting to compare figure 4 with figure 14(a ) .  
Both of these flows have the same (time)% similarity law, both may be shown to have 
essentially the same first-order asymptotic spiral vortex and both may be regarded 
as having the same initial conditions. The difference between them is the bound 
vortex sheet (flat plate) in the present starting-flow problem. 

3.4. Comparison with asymptotic solution 

Rott (1956) obtained a solution of (35 )  in the inner spiral part of the sheet (A+ 1 )  
which for m < 00 may be written as 

where r = ( 1  -A)1/ (1-2M) with M = ( 1  + m ) / ( 2  - n ) ,  and CL and e are constants to be 
determined. Like (21), (40 )  represents a tightly wound nearly circular spiral. Since it 
likewise does not account for effects of ellipticity in the sheet shape, it is generally 
rather difficult to estimate a and E by patching to the numerical solution. The caseP = 0 
is exceptional however, as ellipticity in the sheet shape was found to be small. Hence 
table 1 shows values of a and e for P = 0 and m = 0, 1 and 2 obt.ained by patching 
(40 )  to w , ~  from the numerical solutions. (The case m -+ 03 is not included since (40 )  is 
not valid in this limit.) We again consider properties of the numerical and asymptotic 
solutions obtained by following a fluid-particle path. Now since all fluid particles 
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m U E J I doldh Ih-0 

0 0.419 1.81 2.640 3.90 
1 0.289 0.760 2.185 1-60 
2 0.256 - 2.46 2.079 1.35 

TABLE 1. Values of parameters in leading-order asymptotic solution obtained from 
numerical solutions; /3 = 0. 

forming the sheet have a t  one time passed through the wedge apex, the sheet is a 
streakline of the flow. Consider a typical sheet material particle J? = ro which passes 
through the apex at  time to. From (32) it  follows that for the particle path 

t/to = (1 - A)N1-2M, 

so that 7 ( 2  1)  in (40) may be identified with the non-dimensional time. Equations 
(31) and (41) then show that the fluid particle eventually moves in a circular orbit of 
constant radius ro with respect to the sheet centre and with azimuthal velocity V, 
given respectively by 

JalK2-n) 
ro = aCaU(2-n)tr, V, = 2Tac1-n tf-1. (41)s (42) 

From (41) and (42) it follows that the azimuthal velocity field obtained by replacing 
the irrotational flow field with discrete jumps by the smoothed-out rotational field is 
V, N ri-l/M. Hence V, is finite a t  the spiral centre for m 1 - n and infinite otherwise. 
From (32) and (40) the asymptotic sheet shape may be obtained as 

from which it follows that the distance between successive sheet turns a t  constant 
radius decreases as 6r N rl+llMt-l. 

From (23), (31) and (32), the sheet strength following the particle may be obtained as 

Using (40), for large 7 this becomes to leading order 

which, as for Kaden's problem, corresponds to sheet stretching with y decreasing at 
all points on the sheet as y N rh1+m)l(n+2m)t-1 for all /3 < 1,  m < 00. However, the 
numerical solutions obtained from (44) lead to rather different behaviour, as may be 
seen in figures 15 (u)-(c), where they are compared with (45) for the parameter values 
in table 1 .  Except for /3 = 0 and m = 0, the present calculations predict that, following 
a particle, the sheet undergoes a sequence of alternate stretching and compression 
processes superimposed upon an overall stretching. The amplitude of the oscillations 
seems to increase with increasing m and /3 and to decrease only slowly with increasing 
7 .  By computing the actual particle trajectories (not shown) it was found that the 
minima in the sheet strength correspond to points at which the particle moves 
roughly normal to the wedge upper surface, while the maxima correspond to points 
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FIGURE 15. Variation of vortex-sheet strength with dimensionless time following a fluid 
particle. (a)  m = 0,  ( b )  m = 1, (c) m = 2. -, present calculation; ---, asymptotic. 

at  which the motion is tangential to the upper surface. This oscillation has an analogy 
in slender-wing leading-edge flow, for which Smith (1 968) found sinuous variations 
in the vortex-sheet strength along the sheet length. The effect is not predicted by (45) 
and is therefore probably associated with the straining influence of the attached flow 
and the wedge vortex image on the inner spiral sheet. 

4. Discussion 
Although there are little experimental data readily available which could be quanti- 

tatively compared with the present results, several workers have obtained interesting 
flow-visualization photographs of considerable qualitative relevance. Rott (1956) 
includes in his paper a photograph of a vortex generated by the diffraction of a shock 
wave by a sharp edge. In  terms of the present parameters the flow corresponds to 
m = 0 and /3 = 8 (90” wedge). Apart from drawing attention to the presence of a 
substantial secondary vortex (the effects of which have been neglected in the present 
work) Rott suggests that ‘wiggles’ and ‘knots’ which may be seen in the primary 
shear layer near the wedge apex may be a sheet instability phenomena. The spark 
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shadowgraph photographs by Pierce (1 961) show what has often been interpreted as 
an instability effect on the outer turn of the approximately two-dimensional vortex 
sheet emanating from the sharp edge of an accelerating body. (For Pierce’s case 
/3 N $ and m N 2 initially.) However, on the basis of having obtained and eliminated 
similar effects in photographs of the unsteady bilge-keel vortex on a ship model, 
Professor P. T. Fink of the University of New South Wales suggests (private com- 
munication) that this phenomenon may have been due to the effect of’ ‘ jitter’ induced 
by solid friction in Pierce’s experimental apparatus. Fink & Soh (1974) present a 
good photograph of the ship bilge-keel vortex produced by impulsive motion which 
shows no sign of instability. Likewise Prandtl & Tietjens’ photograph gives no in- 
dication of flow instability, all of which suggests that the wiggles in Pierce’s photo- 
graphs may represent an apparatus-induced disturbance that does not amplify. 

The stability problem for a general two-dimensional vortex sheet has been treated 
by Moore (1976) following earlier work by Moore & Griffith-Jones (1974). Using a 
short-wave approximation, Moore found that a sufficient condition for the evolution 
of small disturbances on the sheet to be determined by local sheet properties was that 
the undisturbed sheet strength be of the form y ( r ,  t )  = f ( r ) g ( t ) ,  local sheet stretching 
faster than a certain rate being one stabilization mechanism. As a special case, the 
continuously stretching spiral sheet with equation 

r2-%9/t = constant (46) 

was shown to be stable. For Kaden’s problem, (46) with S = $ corresponds to the 
asymptotic spiral (21) and, in view of the good agreement with the numerical solution, 
Moore’s analysis is probably sufficient to show that the sheet is stable. Similar con- 
clusions were reached by Fink & Soh (1977) in their numerical treatment of a finite 
vortex sheet with an initially elliptical circulation distribution. For the wedge starting- 
flow problem (43) shows that 6 = 2 - l / M .  Here, however, the present solutions show 
regions of local sheet compression, which is presumably a sheet destabilization effect 
and which is absent from the asymptotic result. Moreover, it may be shown from the 
solutions that Moore’s sufficient condition for the validity of the local stability 
theory may be significantly violated, so that it is generally difficult to infer stability 
of the full solution from stability of the (first-order) asymptotic solution. A possible 
exception is the case m = 0,  /3 = 0 (which corresponds to Fink & Soh’s photograph), 
for which figure 15 ( a )  shows fairly small oscillations in y and good agreement with the 
asymptotic solution, Clearly the stability question for other cases is a rather complex 
one. Further experimental evidence and properly unsteady calculations of the sheet 
motions which include nonlinear stability effects will be required before it can be 
finally resolved. 

5. Conclusions 
For the problem of the roll-up of an initially plane semi-infinite vortex sheet, the 

present calculations indicate that elliptical distortions in the shape of the rolled-up 
portion of the sheet are small. After the few initial turns the sheet shape appears to be 
well approximated by Kaden’s nearly circular asymptotic spiral. Following a fluid 
particle, the continuous sheet stretching with a (time)-l variation in the locd sheet 
strength predicted by the Kaden solution was found to agree substantially with the 
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numerical results. Application of the stability analysis of Moore (1 976) to this result 
then shows that the sheet may be stable to small disturbances. For the self-similar 
wedge starting flow, the sheet is an approximately circular spiral for the flat-plate 
case. However, for non-zero wedge angles, elliptical distortions become very pro- 
nounced and do not appear to decrease substantially over the inner turns of the 
calculated solutions. Moreover, with the exception of impulsively started flow past 
a flat plate, the sheet strength following a fluid particle was found to undergo a cyclic 
stretching/compression process, in some cases with large amplitude. Since neither of 
these effects are predicted by the leading-order asymptotic solution i t  is concluded 
that they are both the result of straining of the sheet spiral induced by the attached 
flow and the bound circulation in the wedge. The influence of this rather complicated 
sheet behaviour on sheet stability remains an unanswered question. 

The author wishes to thank Dr A. E. Perry for several valuable discussions. 

Appendix A. The behaviour of the sheet near the wedge apex 
To obtain the leading-order solution for the sheet behaviour near the leading edge 

for p > 0, we use (36) to write (35) in a form suggested by Rott (1956) in which the 
velocity field for each element of the sheet is paired with that due to its image 
in the wedge together with sufficient of the attached flow to give a finite velocity at 
the wedge apex, viz. 

where 
(I - n) [W + &(I - A )  dG/dA] = ~ J o ~ " - ~ G ( w ) ,  (47a) 

For n = 4 (p = 0 )  the solution of (47) near h = 0 takes the form (Rott 1956) 

w = K ,  h + iK, A8 -I- higher-order terms, (48) 

For n > + (p > 0) ,  (48) is no longer valid and the solution takes on a different char- 
where K ,  and K ,  are real constants which depend on the overall flow. 

acter. We require a solution valid to first order, which we assume is of the form 

w = KAP + higher-order terms, (49) 

where ,K is a complex constant and p > 0. In  the integral on the right-hand side of 
(47 b) ,  the first term represents a Cauchy principal value but the second term does not. 
By taking a point w on the sheet very near the wedge apex, the behaviour of both of 
these integrals may be obtained from the results of Muskhelishvili (1946, chap. 4) for 
the behaviour of Cauchy-type integrals on and near the ends of the line of integration. 

Putting v = pn andusing (49), it turns out that for n > 4, provided that 2 - l / v  > 0, 

where wn@-1/v)G*(w)-+O for w+O. Substituting this result into (47a), using (49) and 
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equating powers of leading order in h leads to v = n (p = I), which satisfies 2 - l / v  > 0 
for n > 8, and also to 

Substituting into (50) gives 

K = [J/2(1- n) Q]+ eW". (51) 

) + G*(w).  
,$-2n 2 (I--)& 4 -i(2n-i)7r 

~ ( w )  = - 2n [ ] exp ( 2n 

Since both sides of (47a) are equal to dQ/dw on the sheet, substitution of (52) and use 
of the Plemelj formulae gives the non-dimensional complex velocities on the windward 
( - ) and leeward ( + ) sides of the sheet near the apex as 

( d R / d w ) ,  = T Z J W ~ ~ - ' G * ( W ) ,  (53a) 

(dQ/dw)- = [2(1 -n)&J]*exp[ -i(2n-l)7r/2n]+nJw2n-1G* ( o 1. (53b) 

From (53) it follows that the leeward side of the wedge is a stagnation point while 
the non-dimensional speed on the  windward side is [2(1- n)  QJ]t. The leading-order 
solution for small h is 

w = [J/2(1--)&]~exp[i(2n- i)n/2n]h+ ..., (54) 

which is sufficient to show that the sheet leaves the wedge tangential to the windward 
surface as predicted by several authors. Equation (48) may be similarly established as 
a formal solution to (47) for n = & (p  = O ) ,  with in this case G ( w )  = a + b d  + . . . for 
small w.  

The qualitative difference between (54) and (48) for n = 4 is that in the latter case 
the solution is determined wholly by the outer flow while for p > 0 the leading-order 
solution is determined locally, only weakly depending on the overall flow through J .  
This appears to resolve, a t  least mathematically, the difficulty raised by Rott (I 956) 
regarding the existence of a near-leading-edge solution for n > &, namely that the 
sheet element immediately adjacent to the wedge apex must provide the mean velocity 
as well as the velocity difference across the sheet while for n = $ the mean velocity is 
provided by the outer flow, the apex element producing only the velocity difference. 
However, the difficulty is a purely formal one -with no physical meaning since for 
n > the mean flow is produced not by the near-apex circulation element itself in the 
sense of the Biot-Savart formula, but through the rather different resolution of the 
attached flow singularity for n = 8 and n > +. I n  other words the pairing of sheet and 
image circulation elements with the att,ached flow implied in (47) takes on a rather 
different character in these two cases. 

To obtain information about, both the form of the velocity field near w = O +  and 
the sheet curvature a t  the apex would require a solution to higher order than has been 
given here. For the related case of the near-apex behaviour of the conical vortex 
sheet emanating from a slender wing of rhombic cross-section, a solution of this kind 
has been given by Clapworthy & Mangler (1974), who used conformal mapping 
methods. 
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FIGURE 16. Tangential velocity field of a circular vortex sheet of radius R.  -, exact; - - - - -, 
mented sheet with distributed circulation; - * * . * , line B, segmented sheet with distributed 
circulation. 

line A, trapezoidal rule, N = 18; ---, line B, trapezoidal rule, N = 18; -.*-.-- , line A, seg- 

Appendix B. Velocity field of a circular vortex sheet 
As a test of the accuracy of the trapezoidal rule used in the evaluation of the integrals 

in (12a), the velocity field due to a circular vortex sheet of constant circulation per 
unit length was calculated. This is a good test case for two reasons. First, the exact 
velocity field is known, and second, it is related to the asymptotic spiral vortex 
since the velocity field of the latter is approximately equivalent to an infinite set 
of distinct uniform concentric vortex sheets (ellipticity effects are regarded as of 
second order here). 

Consider the complex velocity 

a t  a point in the z plane due to a circular two-dimensional vortex sheet 

z ( r )  = Rexp (27d-'/F0) 

of radius r = R and total circulation r0. The integral on the right-hand side of (55) 
may be evaluated exactly to yield for the radial and tangential velocity fields 

(56 )  v, - = 0, 
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Approximating the circular vortex sheet by N equal straight-line segments joined 
at z,/R = exp [ in(2n-  l ) / N ]  (n = 1,  ..., N )  and evaluating the integral on the right 
side by the trapezoidal rule yields 

An alternative, more sophisticated approximation may be obtained by assuming a 
linear variation of z(r) with r between each pair of points z,) and integrating 
over each of the N segments to obtain 

where z,, E zN.  In  figure 16 we compare &(l?o/R)-l evaluated from (58)  and (59) along 
two radial lines in the z plane with (57). Here we used the value N = 18, which corres- 
ponds approximately to the sheet step size used in the present calculations, so that 
AslR N $77. The two lines chosen were z = r (line A ) ,  which bisects a sheet segment, 
and z = r exp ( i n / N )  (line B) ,  which passes through z l ,  as these represent extreme cases. 
Equation (59) leads to small errors at all points along line A and correctly simulates 
the tangential velocity discontinuity a t  the sheet. Along line B,  (59) is logarithmically 
singular near z1 but errors are otherwise small. The errors for (58) are negligible for 
distances from the sheet larger than AslR. Close to the sheet they are large but right 
at the sheet the Cauchy principal value is accurately represented. For points a t  equal 
distances on either side of the sheet however, the errors are of opposite sign and of 
approximately equal magnitude. Hence for a series of closely spaced concentric sheets, 
provided that the sheet-segment joints are positioned radially (as was approximately 
the case in the present calculations), the trapezoidal representation of the velocity 
field will be reasonably accurate even for sheet spacings &/Ss < 1 owing to error can- 
cellation. This may partly explain the unexpected insensitivity to step size observed 
in the present calculations. Note that the use of distributed sheet segments as in (59) 
is generally much less convenient than use of the simple trapezoidal rule. 
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